

Figure 4.1 Decaying Short Circuit Current Waveforms

13

Copyright 2002 by Marcel Dekker. All Rights Reserved.

Note that in the indicated order, the reactance acquires a higher value at each stage, i.e. the subtransient reactance is less than the transient reactance, itself less than the synchronous reactance. The successive effect of the three reactances leads to a gradual reduction in the short-circuit current which is the sum of four components The three alternating components (subtransient, transient and steady-state)

The aperiodic component resulting from the development of the current in the circuit (inductive)

This short-circuit current i(t) is maximum for a closing angle corresponding to the zero-crossing of the voltage at the instant the fault occurs.

مفاهیم اساسی	مروری بر		14
	رگزاری دوره:	هدف از بر	
	تلف.	بات اتصال کوتاه در شبکه در نقاط مخ	- نحوه محاسب
	های مختلف.	شدن جریان اتصال کوتاه در توپولوژی	– مسیر جاری
	مختلف به طرف محل خطا	، اتصال کوتاه جاری شده از سمتهای	– اندازه جريان
	. هیزات شبکه در رابطه با اتصال کوتاه	ىناخت تعاريف ارائه شده از طراحى تج	– بازخوانی و ش
		مدود کردن جریان خطا	– روشهای مح
	ن تحمل کلید	قدرت در رابطه با اتصال کوتاه و میزان	- تعاريف كليد
Enermonde, All Rights Reserved	Author: Alireza Ashrafi	Mahabad Petrochemical Company	Nav. 2024
			15
			15
		صل دوم:	<u>15</u>
		صل دوم:	15 ف
	ولفههای متقارن و مدار	صل دوم: مروری بر مفاهیم مو	<u>15</u> ف
	ولفههای متقارن و مدار در انواع خطاها	صل دوم: مروری بر مفاهیم مو معادل آنها ه	<u>15</u>
	ولفههای متقارن و مدار در انواع خطاها	صل دوم: مروری بر مفاهیم مو معادل آنها د	<u>15</u>
	ولفههای متقارن و مدار در انواع خطاها	صل دوم: مروری بر مفاهیم مو معادل آنها ه	<u>15</u>
	ولفههای متقارن و مدار در انواع خطاها	صل دوم: مروری بر مفاهیم مو معادل آنها ه	<u>15</u>
	ولفههای متقارن و مدار در انواع خطاها	صل دوم: مروری بر مفاهیم م معادل آنها ه	<u>15</u>

	c b	c=0 \b	a=0	c /b=0	c=0 b	c b	▲ b=0	b=c=0	b 🎽	ĉ
Zero Seq. Currents		•			a ₀ , b ₀ , c ₀ ∕▼	a ₀ , b ₀ , c ₀ ↓	a ₀ , b ₀ , c ₀ ▼	a ₀ , b ₀ , c ₀ ▲	a ₀ , b ₀ , c ₀	a ₀ , b ₀ , c ₀
Negative Seq. Currents			$c_2 b_2$ a_2	b ₂ a ₂	a ₂ c ₂	c₂ b₂ ▼a₂	b ₂ a ₂ VC ₂			
Positive Seq. Currents	a_1 c_1 b_1		a ₁ c ₁ b ₁	a ₁ c ₁ b ₁		a ₁ c ₁ b ₁				
Fault	a, b, c	a, b	b, c	c, a	a, b, G	b, c, G	c, a, G	a, G	b, G	c, G

Enermonde, All Rights Reserved

Author: Alireza Ashrafi

Mahabad Petrochemical Company

Mahabad Petrochemical Company

Nov. 2024

خطاي تكفاز وجريان مولفه صفر

Author: Alireza Ashrafi

Mahabad Petrochemical Company

Nov. 2024

خطای تکفاز و جریان مولفه صفر

40

Mahabad Petrochemical Company

Nov. 2024

Author: Alireza Ashrafi

B2

<u>Transformation</u> Primary Secondary ← (Pri.) (Sec.) →	Passes Zero Seq. Current?	Provides a Source for Zero Seq. Current?
Y Y	No	No
Y Y	No	No
Y <u></u> Y	No	No
Y ₌ Y ₌	Yes	No
\triangle \triangle	No	No
A Y <u>i</u>	No	Yes (to Sec. only)
Y _₽ Δ	No	Yes (to Pri. only)
$\land \land \land$	No	No
Y A Y	No	Yes (to Sec. only)
Y _₽ < Y _₽	Yes	Yes (to Pri. and Sec.)
ŶĹŢ	Yes	No
	Yes	Yes (to Pri. and Sec.)

Table 1. Transformer Connections and Zero Sequence Current

Network Protection & Automation Guide

محاسبات اتصال كوتاه

59

ولتاژ مولفه های صفر و مثبت و منفی در خطای تکفاز به زمین $I_1 = I_2 = I_0 = \frac{180}{2 \cdot \left(j2 + \frac{j6}{2}\right) + j8} = -j10 \ kA$

$U_1 = E_1 - Z_1 \cdot I_1 = 180 - (j2 + j\frac{6}{2}) \cdot (-j10) = 130 \ kV$
$U_2 = 0 - Z_2 \cdot I_2 = 0 - (j2 + j\frac{6}{2}) \cdot (-j10) = -50 \ kV$
$U_0 = 0 - Z_0 \cdot I_0 = 0 - j8 \cdot (-j10) = -80 \ kV$

Nov. 2024

Mahabad Petrochemical Company

		$I_{0F} = \frac{173^{7}\sqrt{3}}{2 \cdot (4+5+10) + \frac{(4+26) \cdot (8+1)}{(4+26) + (8+1)}}$	$\frac{2}{2} = 2 \text{ kA}$
	1=2 kA I"1=0 10 10	$I'_{0} = \frac{8+12}{4+26+8+12} \cdot 20 = 0.8 \text{ kA}$ $I''_{0} = \frac{4+26}{4+26+8+12} = 1.2 \text{ kA}$	
	$I''_2=0$	$I'_a = 2 + 2 + 0.8 = 4.8 \text{ kA}$ $I'_b = a^2 \cdot 2 + a \cdot 2 + 0.8 = -1.2 \text{ k}$	A
$ I'_0 =$	=0.8 kA I"₀=1.2kA 26 8 12	$I'_c = a \cdot 2 + a^2 \cdot 2 + 0.8 = -1.2 \text{ k}$	A
Generator: $X_1 = 4 \Omega$ Transformer A: $X_1 = 5 \Omega$ OH-line: $X_1 = 10 \Omega$ Transformer B: $X_1 = 10\Omega$ Neutral reactance: $X_R =$	$X_{0} = 4 \Omega$ $X_{0} = 26 \Omega$ $X_{0} = 8 \Omega$ 4Ω	$I_a = 0 + 0 - 1.2 = -1.2 \text{ kA}$ $I_b'' = 0 + 0 - 1.2 = -1.2 \text{ kA}$ $I_c'' = 0 + 0 - 1.2 = -1.2 \text{ kA}$	
Enermonde, All Rights Reserved	Author: Alireza Ashrafi	Mahabad Petrochemical Company	Nov. 2024

اميدانس	، عمومی ا	رهای	مقدا

امیدانس ژنراتورهای بزرگ

Type of machine		Turbo- generator	Salient-pole generator with damper winding	Salient-pole generator without damper winding
Subtransient reactance	x _d " (%)	9 to 32	14 to 32	22 to 40
Transient reactance	x _d ' (%)	14 to 45	20 to 36	22 to 40
Synchronous reactance	<mark>х_d (%)</mark>	120 to 300	75 to 140	75 to 140
Negative sequence react.	x ₂ (%)	9 to 32	14 to 27	36 to 63
Zero sequence reactance	x ₀ (%)	2 to 20	3 to 23	4 to 30
Subtransient time constant	T _d " (s)	0.02 to 0.05	0.02 to 0.05	
Transient time constant	T _d ' (s)	0.4 to 1.8	0.7 to 2.5	0.7 to 2.5
d.c. time constant	T _{dc} (s)	0.07 to 1.0	0.1 to 0.4	0.15 to 0.5

Enermonde, All Rights Reserved

Author: Alireza Ashrafi

دارهای عمومی امپدانس	مق		72
	سفورماتور قدرت	امپدانس ترانس	
Rated power	Ratio	Short-circuit	No-load magnetizing
MVA	kV/kV	% UN	% In
850	850/21	17	0.2
600	400/230	18.5	0.25
300	400/120	19	0.1
300	230/120	24	0.1
40	110/11	17	0.1
16	30/10.5	8.0	0.2
6.3	30/10.5	7.5	0.2
0.63	10/0.4	4.0	0.15
Enermonde, All Rights Reserved	Author: Alireza Ashrafi	Mahabad Petroc	hemical Company Nov. 2024

مثلث	م پیچ ستارہ-	درت با سیـ	فورماتور ق	س ترانس	امپدان	
Core		3-limbed			5-limbed	6
Connection		Ynd			Ynd	
U _N (kV)	123	145 to	300 to	123	245	420
		245	420			
S _N (MVA)	50 to	50 to	100 to	330	440 to	270 to
	350	350	350		1000	<mark>1</mark> 000
u _{T-ps} (%)	13 to	13 to	12 to	16.5	14.5 to	14 to
	14	16	16		17.5	18
u _{R-ps} (%)	0.2 to	0.2 to	0.2 to	0.22	0.2 to	0.2 to
	0.4	0.4	0.35		0.25	0.27
$(X_0 / X_1)_p$	0.85 to	0.85 to	0.85 to	≈1	≈ <mark>1</mark>	≈1
	1.0	1.0	0.95			
$(R_0 / R_1)_p$	1.5 to	1.3 to	1.8 to	1.1	1.0 to	1.0 to
	2.8	2.9	2.0		1.1	1.1

Enermonde, All Rights Reserved

Author: Alireza Ashrafi

Mahabad Petrochemical Company

مقدارهای عمومی امپدانس

امپدانس ترانسفورماتور قدرت با سیم پیچ ستاره-مثلث و یا سیم پیچی زیگ زاگ

Core	3-limbed					
Connection	Yzn		Dyn			
U _N (kV)	3.6 to 24	3.6 to 36	3.6 to 24	3.6 to 36		
S _N (MVA)	< 250	<250	250 to 630	250 to 1600		
u _T (%)	4	6	4	6		
u _R (%)	2.15 to 1.5	2.3 to 2.0	1.65 to 2.05	1.8 to 1.25		
(X ₀ / X ₁) _s	0.07 to 0.11	0.10 to 0.09	0.95 to 1.0	0.95 to 1.0		
$(R_0 / R_1)_s$	0.45 to 0.54	0.56 to 0.57	1.2 to 1.8	1.2 to 1.8		

Enermonde, All Rights Reserved

Author: Alireza Ashrafi

Mahabad Petrochemical Company

Nov. 2024

Mahabad Petrochemical Company

Nov. 2024

Author: Alireza Ashrafi

Enermonde, All Rights Reserved

87
فصل هفتم:
محدود کردن جریان اتصال کوتاه
Enermonde, All Rights Reserved Author: Alireza Ashrafi Mahabad Petrochemical Company Nov. 2024
88 محدود کردن جریان اتصال کوتاه
محدود کردن جریان اتصال کوتاه
- با توجه به توسعه شبکه ها و افزایش تقاضا برای انرژی، افزایش تعداد نیروگاه های جدید و افزایش خطوط انتقال انـرژی امری لازم و ضروری است.
- با افزایش تعداد نیروگاه ها و خطوط انتقال انرژی، اندازه جریان اتصال کوتاه در شبکه افزایش می یابد.
- با افزایش سطح اتصال کوتاه، باید تجهیزات قدیمی شبکه نیز توسعه یابند و در صورت عدم تحمل جریان اتصال کوتاه، باید نسبت به تعویض آنها اقدام کرد.
- هزینه های هنگفت ناشی از تعویض تجهیزات، الزاماتی را برای کاهش جریان اتصال کوتاه (در حضور نیروگاه ها و خطوط انتقال جدید) به همراه می آورد.
– قابل توجه است که هر یک از روش های کاهش جریان اتصال کوناه، قابلیت اطمینان شبکه را تحت تأثیر قرار می دهند.

Figure 11.2 Schematic diagram of a 400/132-kV-system for urban load; values of short-circuit currents in case of operation as two subsystems

Operating the 132-kV-system as two separate subsystems will require additional cable circuits and an extension of the switchgear to fulfil the (n - 1)-criteria for a reliable power supply.

Figure 11.3 Schematic diagram of a 132-kV-system with power station

Figure 11.4 Equivalent circuit diagram of a 30-kV-system with feeding 132kV-system: (a) Operation with transformers in parallel and (b) limitation of short-circuit current. Result of three-phase short-circuit current: $S''_{kQ} = 3.2 \text{ GVA}$; $S_{rT} = 40 \text{ MVA}$; $u_{krT} = 12\%$; $t_{rT} = 110/32$; OHTL 95Al; $l_{tot} = 56 \text{ km}$

Figure 11.5 Equivalent circuit diagram of a 380-kV-system and results of threephase short-circuit current calculation: (a) Radial fed system and (b) ring fed system. $S''_{kQ} = 8 GVA$; OHTL ACSR/AW 4 × 282/46; $l_i = 120 \text{ km}$

As can be seen from Figure 11.5 the short-circuit currents are reduced from $I_{k3}'' = 23.6$ kA to $I_{k3}'' = 22.7$ kA (3.8 per cent) with the new topology. The reduction of the short-circuit currents is comparatively small, but will be more significant, if an increased number of feeders (or generators) shall be connected [2].

Figure 11.6 Schematic diagram of a 110-kV-substation fed from the 220-kV-system: (a) Operation with buscoupler closed and (b) operation with buscoupler open. Result of three-phase short-circuit current calculation

Figure 11.7 Equivalent circuit diagram of a 6-kV-industrial system. Results of threephase short-circuit current calculation: (a) Busbar sectionaliser closed and (b) busbar sectionaliser open

محدود كردن جريان أتصال كوتاه

محدود كردن جريان اتصال كوتاه

استفاده از Is-Limiter (یا Ip-Limiter) به منظور قطع سریع در زمان بروز اتصال کوتاه.

I_S-limiter Comparison: I_s-limiter – Circuit-breaker

I_S-limiter Comparison: I_s-limiter – Circuit-breaker

$I_{\rm s}\mbox{-limiter}$ – Function Breaking of a short-circuit current with $I_{\rm s}\mbox{-limiter}$

$I_{\rm s}\mbox{-limiter}$ – Function Breaking of a short-circuit current with $I_{\rm s}\mbox{-limiter}$

$I_{\rm s}\mbox{-limiter}$ – Application $I_{\rm s}\mbox{-limiter}$ mounted in bus section

Advantages:

- Improving "power quality"
- Increasing grid's reliability
- Reducing networkimpedance
- Optimizing load flow
- Existing busbar system and cabling does <u>not</u> have to be changed

I_s -limiter – Application I_s -limiter in generator feeder

Advantages:

- Connecting gennerator independent of grid's short-circuit capability
- Existing busbar system and cabling does <u>not</u> have to be changed
- Separate generator breaker needless

I_s -limiter – Application I_s -limiter in parallel to reactor

Advantages:

- Avoid ohmic loasses (copper losses) of the reactor
- Avoid voltage drop of reactor
- Avoid electro-magnetic field of reactor
- Greenhouse aspects (CO₂ and heating)

			104
		هفتم:	فصل
	ه در کلیدهای قدرت های باسبار	تحمل اتصال کوتا و شینه	
Enermonde, All Rights Reserved	Author: Alireza Ashrafi	Mahabad Petrochemical Company	Nov. 2024
حمل کلیدهای قدرت	ت		105
	ے کلید قدرت ID	27¢	
CIRCUIT-BE VD4/P 12.1 CLASSIFIC SN 1VC1A M MASS Ur VOLTAG UP LIGHTIN Ud POWER fr FREQUE Ir NORMAL Ik SHORT Ise SHORT MAKING AT THE D.G. CC IC CABLE OPERA	REAKER 2.32 ATION E2,M2,C G00030759 E G IMPULSE WITHSTAND V FREQUENCY WITHSTAND V FREQUENCY WITHSTAND L CURRENT TIME WITHSTAND CURRE ON OF SHORT CIRCUIT CIRCUIT BREAKING CURP S CAPACITY (PEAK VALUE) VOLTAGE OF DMPONENT CHARGING BREAKING CU	IEC 62271-10 CEI 17-1 PR.YEAR 2006 OLTAGE 75 VOLTAGE 75 VOLTAGE 75 NT 31,5 80 12 75 VOLTAGE 75 NT 31,5 80 12 80 12 80 12 80 12 80 12 90 90 91 91 92 930	O kgy ky ky ky ky ky ky ky ky ky ky ky ky ky
ELECT FIG.01 FIG.33	FIG.02 FIG.04 FIG.07 FIG.08	47 (E0494)	
EL1 -MC 11 -MO111	OPERA OV === -RL1 110V -RL2 110V ABB, Italy	TING MECHANISM	
and the second sec	NAME OF TAXABLE PARTY OF TAXABLE PARTY.	the second s	

كليدهاي قدرت	المحت		114
	لدرت	پلاک کلید ق	
Type 3AH5125-2 No. S 3AH51/0002559 Ur 12,0 kV 50/60 H Isc 31.5 kA Ud/Up 28/75 kV Umax Rated operating sequence Category to IEC 62271-100 MADE II	Year of manuf. 2011 Z Ir 1250 A 1k. 3s m 60 kg : 0-0,3s-CO-3min-CO DE2, M2, C2 N GERMANY	ىپر برابر با جريان قابل تحمل حرارتــى است. ـه DC در زمــان قطـع بــر اسـاس مدتا براى ثابت زمانى ۴۰ ميلى ثانيــه ست كه برابر با ۳۰٪ است.	استخراج اطلاعات: جریان ۳۱.۵ کیلوآه و جریان قطع کلید میزان جریان مولف دیتاشیت است اما ع در نظر گرفته شده ا
٣	بان نوشته شده در پلاک کلید است	نابل تحمل کلید حدود ۲.۵ تا ۲.۶ برابر جری	میزان جریان پیک ق
Enermonde, All Rights Reserved	Author: Alireza Ashrafi	Mahabad Petrochemical Company	Nov. 2024